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The nonlinear problem on heat conduction with discontinuity coefficients was solved by the finite-difference
method with the use of a grid irregular in time and space. The calculations were carried out using difference
schemes with a "weight," making it possible to control the calculation accuracy. The computational experi-
ment has been performed for a steel of standard quality.

Introduction. At present, the main challenge of producers of metals is the obtaining of high-quality castings
having a low cost. This can be attained first of all by increasing the efficiency of equipment used for production of a
metal, which is determined by the yield of the finished metal, the rate of casting, the quality of the production proc-
ess, and the design of the units and mechanisms of the equipment. The problem of improvement of the indicated char-
acteristics can be solved with the use of the modern mathematical apparatus that allows one to determine the
parameters of the process of production of a metal and the design parameters of a continuous-casting machine (CCM)
used in this process, which mainly determine the quality of the finished metal and the efficiency of the CCM [1–5].

The main problem of the mathematical simulation of the process of production of a casting is the construction
of its temperature field on the basis of the input characteristics at different instants of crystallization and cooling and
at the instant of unbending of the ingot at a definite temperature of its surface. The solution of such problems by em-
pirical methods is expensive and time-consuming. Moreover, corresponding experiments should be multi-variant be-
cause many factors influence the production of a steel casting — the rate of extending of an ingot, the cross-section
dimension of the ingot and its initial temperature, the chemical composition of the steel, and the geometric charac-
teristics of a CCM used in the production process.

The aim of the present work is to solve the nonlinear problem on heat conduction in a solidifying casting
with the use of an efficient numerical method and to perform a computational experiment for a steel of characteristic
quality and for a standard industrial CCM. The finite-difference method was used for approximate solution of this
problem. The difference scheme used in the calculations was constructed by the integro-interpolation method [6]. Cal-
culations were carried out on a grid irregular in time and space. Unlike, e.g., [5], we used models and numerical al-
gorithms accounting for the discontinuities of the heat conduction and density of the steel arising as a result of phase
transitions as well as difference schemes with "weights," making it possible to control the accuracy of calculations.

Physicomathematical Model. The heat conduction in a steel ingot is defined by the nonstationary, nonlinear
heat-conduction equation

ρ (T) cef (T ) 
∂T

∂t
 = div (λ (T ) grad (T )) . (1)
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It is assumed that the steel is crystallized at temperatures falling within a fairly wide range ∆Tcr = Tsol −
Tliq. Consequently, impurity-free metals crystallized at a temperature close to Tcr will not be considered. It is also as-
sumed that the local overcooling of the melt can be disregarded.

The accuracy of solution of the problem on the heat conduction in a steel depends significantly on the
temperature dependence of the nonlinearity of the thermophysical characteristics of the steel. Because of this, we
will formulate the problem using known methods of calculating the heat-conductivity coefficient and the density of
materials [7–10]. It should be noted that the functions of these thermophysical characteristics have discontinuities of
the first kind.

The shape of the cross section of the castings being investigated and their axial symmetry allow us to pass
from the Cartesian coordinate system to the cylindrical coordinate system and use the following equation:

ρ (T ) cef (T ) 
∂T

∂t
 = 

1
r

 
∂

∂r
 



rλ (T ) 

∂T

∂r




 ,   0 < r < R ,   0 < t < tf . (2)

It is assumed that the heat exchange at the inner wall (in the cooling zones) of the mould of an ingot pro-
ceeds by the Newton convection law

− λ (T ) 
∂T

∂r



r=R

 = α (T
r=R

 − Tmed) , (3)

and a heat flow has discontinuities of the first kind at the instant a melt passes from one zone to an other one. Be-
cause of this, the solution of the problem at the interface between the zones is not smooth in character — the first
time derivatives of the solutions at this interface have discontinuities of the first kind.

It is assumed that the temperature field at the symmetry axis (r = 0) of a casting is bounded [11]:

  lim
r→ 0

  rλ (T ) ∂T

∂r
 = 0 . (4)

Unlike, e.g., [12] where the condition 
∂T

∂r



r=0

 = 0 was used, relation (4) defines the behavior of the solution in the

vicinity of the axis of the casting more exactly. This boundary condition allows one, on the one hand, to obtain a
more exact solution of the problem and, on the other, to construct a difference boundary condition for Eq. (2) at nodes
in the neighborhood of the point r = 0 and retain the thermal balance of the numerical method (the conservatism of
the difference schemes) throughout the range of space integration. Conditions (2)–(4) are supplemented with the initial
condition

T
t=0

 = Tm . (5)

Numerical Algorithm. Problem (2)–(5) is solved approximately by the finite-difference method with the use
of a grid irregular in time and space.

For the region Ω = [(0; R) × (0; tf] we will introduce an irregular spatial grid ωr:

ωr = 









ri 8 [0; R] ,   ri = r0 + ∑ 

k=1

i

 hk ,   i = 1, 2, ..., N ,   r0 = 0 ,   rN = R










and an irregular time grid ωt:

ωt = 









tj 8 [0; tf] ,   tj = t0 + ∑ 

k=1

j

 τk ,   j = 1, 2, ..., M ,   t0 = 0 ,   tN = tf










 ,
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where ri is a node of the grid ωr; tj is a node of the grid ωt; hi is a pitch of the grid ωr, i = 1, 2, ..., N; τj is a pitch
of the grid ωt, j = 1, 2, ..., M; ω = ωr × ωt.

We introduce the following designations. Let y = yi
j = y(ri, tj) be a function determined in the grid ω., and

y
[
^  = yi+1

 j
 − yi

 j

 ⁄ ²i, ²i = 0.5(hi + hi+1), i = 1, 2, ..., N − 1, j = 0, 1, ..., M ; yx

_ = yi
 j
 − yi−1

 j 

 ⁄ hi, i = 1, 2, ..., N,  

j = 0, 1, ..., M ; y
∨
 = yi

 j−1
 = y (xi, tj−1) ,   y

t
_ = yi

 j
 − yi

 j−1

 ⁄ τj ,   i = 0, 1, ..., N ,   j = 1, 2, ..., M .

A difference scheme for Eq. (2) is constructed with a weight σ in accordance with [6]:





σc~ (yi) + (1 − σ) c~ (y
∨

i)



 y

t
_ = 

1
ri

 




σΛ (yi) + (1 − σ) Λ (y
∨

i)



 , 0 ≤ σ ≤ 1 , i = 1, 2, ..., N − 1, j = 1, 2, ..., M , (6)

where

c~ (yi) = ρ (yi
 j) cef (yi

 j) ;   Λ (yi) = 
1
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 j
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 j
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 j
 = 

1

2
 ri λ (yi

 j) + ri−1 λ (yi−1
 j )

 .

The boundary conditions (3) and (4) are approximated with the same order as Eq. (2):

− σaN
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 =
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 j
 − yN

 j−1

τj
 + αR σyN

 j
 + (1 − σ) yN

 j−1
 − αRTmed , (7)
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 λ (y0

 j) + λ (y1
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 . (8)

The weight σ can take values from the interval [0; 1]. In practice, the following values of it are used: 0 or
1, or 0.5. A Crank–Nicholson scheme with an approximation error O(h2 + τ2) is obtained at σ = 0.5, an asymptotically
stable scheme with an approximation error O(h2 + τ) is obtained at σ = 1, and an explicit difference scheme with an
error O(h2 + τ) is obtained at σ = 0.

The system of nonlinear algebraic equations (6)–(8) is solved in the obvious way in the case where σ = 0
and by the iteration method in the case where σ ≠ 0 [6]. Calculations with discontinuous heat-conductivity and density
coefficients are carried out by the methods described in [13, 14]. To obtain reliable results, it is necessary to perform
calculations for different values of σ and vary the pitch of the grid ω in their process.

Computational Experiment. The problem on heat conduction in a solidifying steel ingot of quality 70 K ob-
tained by the continuous-casting method on a standard CCM was numerically solved. The initial data for solution of
the problem were as follows: the radius of the casting R = 0.155 m, the rate of casting is 0.75 m/min, the initial tem-
perature of the melt Tm = 1768 K, the temperature of the liquidus Tliq = 1738 K, the temperature of the solidus Tsol
= 1679 K, the temperature of the medium Tmed = 303 K, the specific heat

cef (T) =











cliq   at   T ≥ Tliq ,

csol − L 
dΨ
dT

    at   Tsol < T < Tliq ,

csol   at   T ≤ Tsol ,
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where L = 272 kJ/kg; cliq = 710 J/(kg⋅K); csol = 496 + 0.16(T − 323) + ∑ 

i=1

4
miLi

δTi
 exp 





−a1
2




Ti − T

δTi





2


, where a1 = 4,

mi = 4.5141, i = 1, 4
___

; T1 = 1000 K, T2 = 1033 K, T3 = 923 K, T4 = 1033 K; δT1 = 70 K, δT2 = 350 K, δT3 = 1100  K,

δT4 = 170 K; L1 = 44,076 − 85,622x2 + 50,357x, L2 = 5163.2 − 74,009x2 + 70,232x, L3 = 2622.3 − 92,590x2 +

80,523x, L4 = 14,775 + 154,544x2 − 142,489x; Ψ(T) = cliq
∗  − x/(cliq

∗  − csol
∗ ), x = 0.7; cliq

∗ (T) = 15.463359 − (0.124528×

10−1)T + (0.216279⋅10−5)T2, csol
∗  = –11.0388 + (0.278656⋅10−1)T − (0.120163⋅10−4)T2.

Figure 1 shows the temperature dependence of the specific heat of the steel being investigated. The depend-
ences of the density of the steel and its heat-conductivity coefficient on the temperature are shown in Fig. 2. The
CCM is conditionally divided, in accordance with its design, into five zones (Fig. 3) differing in the intensity of the
external cooling. The crystallizer includes two zones: the zone of contact of the melt with the wall of the crystallizer

Fig. 1. Temperature dependence of the specific heat of a casting. cef, J/(kg⋅K);
T, K.

Fig. 2. Temperature dependences of the heat-conductivity coefficient (1) and
the density (2) of the casting. T, K; λ, W/(m⋅K); ρ, kg/m3.

Fig. 3. Diagram of a CCM-3.
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1 (l = 0.4 m) and the zone of the gas-air gap 2 (l = 0.4 m). After the continuous casting leaves the crystallizer, it
passes through four zones: the zone of intensive injector cooling 3 (l = 0.47 m), the secondary-cooling zones (SCZ) 4
and 5 (l = 0.95 and 1.51 m respectively), and the zone of cooling in air 6 (l = 18.97 m).

The CCM zones are characterized not only by the length but also by the heat-transfer coefficient α. In the
calculations, a fairly large coefficient of external heat exchange (α = 2100 W/(m2⋅K)) was used for zone 1 because,
in this zone, a contact heat exchange between the surface of the casting and the inner wall of the crystallizer is real-
ized. For zone 2, in which there occurs a radiative heat exchange between the surface of the casting and the inner sur-

Fig. 4. Temperature distribution over the cross section of the ingot at the out-
put of the zones of the CCM (1–6 are numbers of zones): l = 0.4 and α =
2100 (1), 0.4 and 60 (2), 0.47 and 850 (3), 0.95 and 120 (4), 1.51 and 40 (5),
18.97 m and 25 W ⁄ (m2⋅K) (6). T, K; r, m.

Fig. 5. Change in the temperature of the casting in the process of its solidifi-
cation: 1) axis of the ingot (r = 1); 2) surface of the ingot (r = 0.155); 3) dis-
tance of 100 mm from the surface of the ingot (r = 0.055); 4) distance of 15
mm from the surface of the ingot (r = 0.140); 5) distance of 50 mm from the
surface of the ingot (r = 0.105 m). T, K; t, sec.
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face of the crystallizer and heat is transferred through the thin gap filled with a gas mixture and the scale formed on
the surface of the casting, the average heat-transfer coefficient is taken to be equal to 60 W/(m2⋅K). In zone 3, where
the strongest injector cooling is realized, the heat-transfer coefficient is equal to 850 W/(m2⋅K). In zone 4, the cooling
water can fall on the surface of the casting; therefore, the heat-transfer coefficient is taken to be equal to 120
W/(m2⋅K) in this zone. In zone 5, the temperature of the surface of the casting and the intensity of cooling are some-
what lower than in the previous regions of the secondary-cooling zone; therefore, the heat-transfer coefficient is taken
to be equal to 40 W/(m2⋅K) in this zone. In the case of cooling in air (zone 6), the heat lost through the surface of
the casting is relatively small and accounts for 25 W/(m2⋅K).

As a result of the numerical solution of the problem, Eqs. (2)–(5), it was established that the steel ingot being
investigated is completely crystallized in 20.5 min. Below are graphs characterizing the temperature distribution over
the section of the ingot at the output of the CCM zones (Fig. 4) and the graphs of change in the temperature of the
ingot in the process of its cooling, obtained for different values of r (Fig. 5).

In [5], experimental temperature distributions, measured for a rectangular (250 × 300 mm) steel ingot of qual-
ity 70 K, obtained on the CCM-3 of the Republican Unitary Enterprise "Belarusian Engine Works," are presented. The
deviation of the calculated time of solidification of the ingot from the experimental time is 6.5%. In our opinion, this
difference is due to the

a) measurement errors of detectors;
b) approximate values of the coefficients of the equation used in the calculations;
c) difference in shape between the castings investigated;
d) possible difference in chemical composition between the steel ingots investigated;
e) tolerances in the specifications of the process;
f) approximation errors involved in the numerical method used for calculations and the errors of the calcula-

tions themselves.
It should be noted that, despite the difference in shape between the castings investigated, the temperature distributions
presented in Fig. 4 are close to the experimental temperature distributions.

Conclusions. The method proposed for calculating the temperature fields of a solidifying steel ingot will be
useful for a multi-variant simulation in the case where it is necessary to obtain results fairly rapidly without regard for
the fact that the real process is multidimensional.

NOTATION

cef(T), specific heat, J/(kg⋅K); cliq and csol, specific heat of the liquidus and solidus, J/(kg⋅K); L, specific heat
of crystallization, J/kg; l, length of a zone, m; r, distance from the center of a casting, m; R, radius of the casting, m;
t and tf, current and finite instants of time, sec; T, temperature, K; Tcr, crystallization temperature, K; Tm, initial tem-
perature of the melt, K; Tliq, Tsol, and Tmed, temperature of the liquidus, solidus, and medium, K; y(ri, tj), function
determined on the grid; v, rate of casting of a metal, m/min; α, coefficient of external heat exchange, W/(m2⋅K); λ(T),
heat-conductivity coefficient, W/(m⋅K); ρ(T), density, kg/m3; ωr, spatial grid; ωt, time grid; Ψ, relative fraction of the
liquid phase in the control volume of the solidifying melt. Subscripts: ef, effective; liq, liquidus; sol, solidus; f, finite;
m, melt; med, medium; cr, crystallization.
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